Hierarchical Planar Correlation Clustering for Cell Segmentation

نویسندگان

  • Julian Yarkony
  • Chong Zhang
  • Charless C. Fowlkes
چکیده

We introduce a novel algorithm for hierarchical clustering on planar graphs we call “Hierarchical Greedy Planar Correlation Clustering” (HGPCC). We formulate hierarchical image segmentation as an ultrametric rounding problem on a superpixel graph where there are edges between superpixels that are adjacent in the image. We apply coordinate descent optimization where updates are based on planar correlation clustering. Planar correlation clustering is NP hard but the efficient PlanarCC solver allows for efficient and accurate approximate inference. We demonstrate HGPCC on problems in segmenting images of cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Planar Ultrametrics for Image Segmentation

We study the problem of hierarchical clustering on planar graphs. We formulate this in terms of finding the closest ultrametric to a specified set of distances and solve it using an LP relaxation that leverages minimum cost perfect matching as a subroutine to efficiently explore the space of planar partitions. We apply our algorithm to the problem of hierarchical image segmentation.

متن کامل

Planar Ultrametric Rounding for Image Segmentation

We study the problem of hierarchical clustering on planar graphs. We formulate this in terms of an LP relaxation of ultrametric rounding. To solve this LP efficiently we introduce a dual cutting plane scheme that uses minimum cost perfect matching as a subroutine in order to efficiently explore the space of planar partitions. We apply our algorithm to the problem of hierarchical image segmentat...

متن کامل

Think Globally, Cluster Locally: A Unified Framework for Range Segmentation

(a) acquisition (b) clustering (c) refinement Figure 1. Segmentation pipeline. (a) In this simulated LIDAR setup, the frustum represents a scanner projecting a beam onto a 3D model. The beam strikes the nearest surface and measures the distance, rendered here in false color. (b) Similarity based on local plane fitting drives a hierarchical clustering process. (c) Planar components are refined a...

متن کامل

Fast Planar Correlation Clustering for Image Segmentation

We describe a new optimization scheme for finding highquality clusterings in planar graphs that uses weighted perfect matching as a subroutine. Our method provides lower-bounds on the energy of the optimal correlation clustering that are typically fast to compute and tight in practice. We demonstrate our algorithm on the problem of image segmentation where this approach outperforms existing glo...

متن کامل

Developing a Macro-segmentation Model at Industry Level: Iranian Banking Industry

Drastic changes and turbulence in macro-economic factors have the greatest impact on banks target market attractiveness in Iran. It is assumed that conventional segmentation models at the corporate level are not efficient for banking system. This study aims to develop a new segmentation model at the industry level for banks of Iran. For this purpose, structures and variables at the industry lev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014